

SmartDelta

Automated Quality Assurance and Optimization in Incremental

Industrial Software Systems Development

D5.6 – Software Quality Metrics Guideline

Submission date of deliverable: Mar 30, 2025

Edited by: SmartDelta Consortium

Project start date

Project duration

Project coordinator

Project number & call

Project website

Contributing partners

Dec 1, 2021

36 months

Dr. Mehrdad Saadatmand, RISE Research Institutes of Sweden

20023 - ITEA 3 Call 7

https://itea4.org/project/smartdelta.html & https://smartdelta.org/

SmartDelta Consortium

Version number V1.0

Work package

Work package leader

Dissemination level

WP5

Bilge Özdemir

Public

Description

This document provides methods for visualizing and interpreting relevant tool

outputs of WP5 using selected visualization types and explanations of each

metric's importance and action recommendations based on their values.

This guide enables end-users to understand the implications of the data

presented and how it should influence their product deltas.

https://itea4.org/project/smartdelta.html
https://smartdelta.org/

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 2 of 33

Executive Summary

The "D5.6 SmartDelta Metrics Guideline" document details the approach to defining, measuring,

and visualizing key performance indicators within the SmartDelta project. It begins by outlining the

purpose and importance of metrics, emphasizing their role in monitoring project progress and

outcomes.

The document categorizes metrics into various types, distinguishing between quantitative and

qualitative measures. It provides detailed methodologies for metric collection, analysis, and

interpretation, ensuring uniformity across project contributors. Additionally, it highlights best

practices for visualization, specifically through the use of Vaadin charts, to enhance the clarity and

accessibility of complex data.

Further sections delve into case studies and practical applications of the proposed metrics

framework, showcasing real-world examples from project partners. Recommendations for

continuous improvement and adaptability of the metrics system are also included, ensuring long-

term applicability and relevance.

By following this guideline, SmartDelta stakeholders can leverage a standardized approach to

metric evaluation, fostering improved decision-making and operational efficiency across the project

lifecycle.

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 3 of 33

Table of Contents

Executive Summary ... 2

1. Introduction ... 4

2. Cybersecurity Response Efficiency – Mean Time to Detect (MTTD) and Mean Time to Respond

(MTTR) .. 4

3. Automated Test Generation Efficiency ... 5

4. Code Quality Score ... 6

5. Number of Artefacts Analysed per Product .. 8

6. Number of Bugs ... 9

7. Number of Frequency of Degrading Code Commits .. 12

8. Number of Issues Similar to Existing Code .. 14

9. Number of Similar Issues with Different Code .. 15

10. Number of Similar Issues with Similar Code ... 16

11. Observable Decision Coverage ... 18

12. Requirements Smell Score .. 19

13. Size of Bad Code ... 20

14. Test Effort .. 22

15. Test Percentage Advised/Test Scenarios Absent ... 25

16. Defect Effort ... 26

17. Feature Effort ... 28

18. Review Percentage ... 31

19. Summary .. 32

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 4 of 33

1. Introduction

Effective visualization of software quality metrics is essential for enabling stakeholders to interpret

data, derive meaningful insights, and take informed actions. This guideline is designed to help

different stakeholders—ranging from developers and project managers to decision-makers—

identify the most suitable visualization techniques for their needs. By presenting metrics in a clear

and actionable manner, we aim to enhance understanding and facilitate decision-making

processes related to software deltas.

2. Cybersecurity Response Efficiency – Mean Time to Detect

(MTTD) and Mean Time to Respond (MTTR)

2.1. Definition

• MTTD (Mean Time to Detect): Measures the time from log ingestion to security incident

alerting, indicating how quickly potential threats are identified.

• MTTR (Mean Time to Respond): Measures the time from incident detection to response

initiation, assessing the speed at which security teams take action after an alert.

2.2. Importance

Monitoring MTTD and MTTR is critical in cybersecurity to minimize the time threats remain

undetected and unaddressed. A lower MTTD ensures faster threat identification, reducing

potential damage, while a lower MTTR enhances the ability to contain and mitigate risks

efficiently.

2.3. Actions

• If MTTD is high, enhance log processing, optimize detection rules, and leverage AI-based

anomaly detection to reduce alerting delays.

• If MTTR is high, streamline response workflows, automate remediation actions, and

improve SOC analyst coordination to initiate faster resolutions.

• Conduct periodic reviews of detection and response times to identify bottlenecks and

enhance security posture.

2.4. Sources

• Security Information and Event Management (SIEM) systems (e.g., IBM QRadar)

• Security Orchestration, Automation, and Response (SOAR) platforms

• Incident response management tools

• SOC incident logs and reports

2.5. Grouping Variables

I. Severity Levels (Critical, High, Medium, Low)

II. Incident Type (Phishing, Malware, Ransomware, Insider Threats)

III. Response Teams (SOC Analysts, IT, Incident Response Teams)

IV. Time Periods (Hourly, Daily, Weekly, Monthly)

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 5 of 33

2.6. Correlated Metrics

• False Positive Rate: High false positives can delay real incident detection, increasing

MTTD.

• Incident Volume: A surge in incidents may lead to higher MTTR due to resource

constraints.

2.7. Visualization

• Line Graphs to track trends in MTTD and MTTR over time.

• Bar Charts to compare MTTD/MTTR across incident categories or severity levels.

3. Automated Test Generation Efficiency

3.1. Definition

This metric evaluates the efficiency of automated test generation tools and methodologies,

specifically their ability to generate test cases for industrial control software, such as PLC

programs. Efficiency is measured by the time required to generate test cases that satisfy specific

coverage criteria using PyLC, SEAFOX and TIGER+.

3.2. Importance

Efficiency in automated test generation is critical for industrial projects, particularly in safety -

critical domains. This metric provides insights into the usefulness of an automated testing tools.

3.3. Actions

If automated test generation efficiency is low, potential actions include:

• Optimizing tool configurations: Adjust parameters, such as search heuristics or timeout

settings, to improve performance.

• Parallelizing test generation: Implement parallel processing to reduce time for large test

suites.

• Evaluating alternative tools or methods: Consider other test design techniques if efficiency

remains an issue.

3.4. Sources

Sources for data include:

• Test generation logs: Capture timestamps and events.

• Code repositories: Store generated test cases for analysis.

• Automation tools: Tools like PyLC and SEAFOX that log metrics.

3.5. Grouping Variables

Grouping variables for analysis include:

I. Project phases: Measure efficiency across different development stages.

II. Software modules: Track efficiency for various system components.

III. Coverage criteria: Analyse by type (e.g., decision coverage vs. MC/DC).

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 6 of 33

3.6. Correlated Metrics

This metric correlates with:

• Test case execution time: Measures the average time to execute each test case.

3.7. Visualization

• Bar charts to display test generation time across projects.

• Line graphs to show trends in efficiency improvements over time.

4. Code Quality Score

4.1. Definition

The code quality score of a project refers to the overall rating of the written source code, which is

comprised of multiple factors like adherence to best-practice coding guidelines, number of

duplicated code lines or use of deprecated methods.

4.2. Importance

Indicates the overall health of the software project. A low code quality score may suggest a high

number of bugs, poor performance, or inadequate requirements.

4.3. Actions

Implement coding guidelines, conduct code reviews, and enhance requirements analysis to

increase the code quality.

4.4. Sources

• Code repository

• Issue tracking system

• TWT’s CSSA

4.5. Grouping Variables

I. Product

• Definition: The product that multiple code repositories contribute to.

• Importance: Presents the ability to get an overview of the code quality of the whole

product.

• Examples:

o Aggregated code quality score for each product

4.6. Correlated Metrics

• Bad Code

Correlation: Larger size of bad code leads to lower code quality.

Action: Identify bad code segments and improve them.

4.7. Visualization

• Bar Charts

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 7 of 33

Use Case:

o Comparing the code quality scores of different products or projects.

Advantages:

o Easy to compare values across products/projects.

o Clearly shows trends and differences.

Example:

o X-Axis: Product or project identifier.

o Y-Axis: Code quality score.

Additional Elements: Different colours or stacked bars to represent quality levels.

• Line Charts

 Use Case:

o Tracking the trend of the code quality score over time.

o Monitoring the progress of code quality enhancements efforts.

Advantages:

o Shows trends and changes over time.

o Easy to identify peaks and troughs.

Example:

o X-Axis: Time periods (days, weeks, months).

o Y-Axis: Code quality score.

o Additional Elements: Separate lines for each product/project.

• Tables

 Use Case:

o Detailed representation of scores.

o Including multiple attributes such as product/project identifier, score level, last

reported date.

Advantages:

o Comprehensive and detailed.

o Allows for sorting and filtering.

Example:

o Columns for Product/Project ID, Score, Score Level, Last reported Date.

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 8 of 33

5. Number of Artefacts Analysed per Product

5.1. Definition

The "number of artefacts analyzed per product” refers to the total count of artefacts like code

repositories that have been analysed for their code quality. The count is aggregated for each

product.

5.2. Importance

Provides an impression of the relative size of the products, their size evolution and whether the

analysis is running at all.

5.3. Actions

Verify that all artefacts of a product are being analysed for code quality.

5.4. Sources

• Code Repositories

5.5. Grouping Variables

I. Artefact type

• Definition: The artefact types that were analysed.

• Importance: Overview of the share of each artefact type in the analysis.

• Examples:

o Source code, configuration files, compiled code, Docker images

5.6. Correlated Metrics

None.

5.7. Visualization

• Bar Charts

Use Case:

o Comparing the number of artefacts analysed across different products.

Advantages:

o Easy to compare values across categories.

o Clearly shows trends and differences.

Example:

o X-Axis: Product

o Y-Axis: Number of artefacts analysed.

o Additional Elements: Different colours or stacked bars to represent artefact types.

• Line Charts

Use Case

o Tracking the trend of the number of artefacts analysed over time.

o Monitoring the growth of a product.

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 9 of 33

Advantages:

o Shows trends and changes over time.

o Easy to identify peaks and troughs.

Example:

o X-Axis: Time periods (days, weeks, months).

o Y-Axis: Number of artefacts analysed.

o Additional Elements: Separate lines for each product.

• Tables

Use Case:

o Detailed representation of artefact data.

o Including multiple attributes such as artefact type, source, last analysis timestamp.

Advantages:

o Comprehensive and detailed.

o Allows for sorting and filtering.

Example:

o Columns for Product, Number of artefacts analysed, artefact types and counts,

artefact sources, last analysis timestamps.

6. Number of Bugs

The "number of bugs" in a project refers to the total count of identified defects, issues, or errors

within the software. A bug is any unintended behaviour or problem that causes the software to

deviate from its expected performance, functionality, or user experience.

6.1. Definition

Indicates the overall health of the software project. A high number of bugs may suggest poor code

quality, lack of testing, or inadequate requirements.

6.2. Importance

Implement rigorous testing, conduct code reviews, and enhance requirements analysis to reduce

the number of bugs.

6.3. Actions

• Project Management Tools

• Version Control Systems

6.4. Sources

• Project Management Tools

• Version Control Systems

6.5. Grouping Variables

I. Issue Criticality

• Definition: The level of importance or urgency associated with resolving the issue.

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 10 of 33

• Importance: High criticality issues need immediate attention to prevent major disruptions.

• Examples:

o Severity Levels: Critical, Major, Minor, Trivial.

o Priority Levels: High, Medium, Low.

II. Issue Lead Times

• Definition: The time taken to resolve an issue from the moment it is reported to the

moment it is resolved.

• Importance: Long lead times can indicate inefficiencies in the resolution process.

• Examples:

o Lead Time Categories: Less than 1 day, 1-3 days, 3-7 days, more than 7 days.

o Mean Time to Resolve (MTTR): Average time taken to resolve issues.

III. Components of Issues

• Definition: The specific parts or modules of the software system where the issues are

located.

• Importance: Identifying problematic components helps focus efforts on

• improving specific parts of the software.

• Examples:

o Software Modules: User Interface, Database, API, Authentication, Payment

System.

o Subsystems: Frontend, Backend, Middleware.

IV. Assigned Developer/Team

• Definition: The individual developer or team responsible for resolving the issue.

• Importance: Identifies workload distribution and potential bottlenecks within teams.

• Examples:

o Individual Developers: Developer A, Developer B.

o Teams: Frontend Team, Backend Team, QA Team.

V. Issue Source

• Definition: The origin or detection point of the issue.

• Importance: Understanding the source of issues helps improve detection and reporting

processes.

• Examples:

o Detection Methods: Manual Testing, Automated Testing, User Feedback, Code

Review.

o Reported By: QA Team, End Users, Developers.

6.6. Correlated Metrics

• Code Complexity (Cyclomatic Complexity)

Correlation: Higher code complexity often leads to more bugs.

Action: Simplify complex code and use static analysis tools to identify high-complexity

areas.

• Code Coverage

Correlation: Lower code coverage in testing can result in more undetected

bugs or higher bug count with high coverage can mean low quality tests.

Action: Increase unit and integration tests to improve code coverage or improve tests.

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 11 of 33

• Team Velocity

Correlation: Higher team velocity might lead to rushed work and more bugs.

Action: Balance speed with quality, ensuring adequate testing and code reviews.

6.7. Visualization

• Bar Charts

Use Case:

o Comparing the number of bugs across different time periods or components.

o Visualising the distribution of bugs by severity or priority.

Advantages:

o Easy to compare values across categories.

o Clearly shows trends and differences.

Example:

o X-Axis: Time periods (weeks, months) or components (modules, subsystems).

o Y-Axis: Number of bugs.

o Additional Elements: Different colours or stacked bars to represent severity

levels.

• Line Charts

Use Case:

o Tracking the trend of the number of bugs over time.

o Monitoring the progress of bug resolution efforts.

Advantages:

o Shows trends and changes over time.

o Easy to identify peaks and troughs.

Example:

o X-Axis: Time periods (days, weeks, months).

o Y-Axis: Number of bugs.

o Additional Elements: Separate lines for different severity levels or components.

• Pie Charts

Use Case:

o Showing the proportion of bugs by severity, priority, or type.

o Visualising the distribution of bugs across different components.

Advantages:

o Provides a clear visual representation of proportions.

o Easy to understand at a glance.

Example:

o Slices for different severities (critical, major, minor) or components (UI, backend).

• Tables

Use Case:

o Detailed representation of bug data.

o Including multiple attributes such as bug ID, description, severity, status, and

assigned developer.

Advantages:

o Comprehensive and detailed.

o Allows for sorting and filtering.

Example:

o Columns for Bug ID, Description, Severity, Assigned Developer, Date Reported.

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 12 of 33

• Heat Maps

Use Case:

o Highlighting areas with high concentrations of bugs.

o Visualising the density of bugs across different components or time periods.

Advantages:

o Quickly identifies hotspots.

o Effective for large datasets.

Example:

o Rows and Columns: Components and severity levels.

o Colours: Gradient representing the number of bugs.

• Scatter Plots

Use Case:

o Correlating the number of bugs with other metrics such as code complexity, code

churn, or team velocity.

Advantages:

o Shows relationships between two variables.

o Useful for identifying patterns and correlations.

Example:

o X-Axis: Code complexity or another correlated metric.

o Y-Axis: Number of bugs.

o Points: Individual data points, possibly color-coded by severity.

7. Number of Frequency of Degrading Code Commits

7.1. Definition

The "number of degrading code commits" in a project refers to the total count of code commits

that were identified to affect the product quality detrimentally based on the analysis of previous

code and defects. The “frequency of degrading code commits” refers to the distribution of

degrading code commits over a specific time period.

7.2. Importance

Indicates the health of a software project as well as the quality of the work put into its

development.

7.3. Actions

Implement rigorous testing, conduct code reviews, and ensure that the development is not rushed.

7.4. Sources

• Code repository

• UIBK’s SoHist

7.5. Grouping Variables

I. Product

• Definition: The product that multiple code repositories contribute to.

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 13 of 33

• Importance: Presents the ability to get an overview of the number of degrading code

commits of the whole product.

• Examples: Aggregated number of degrading code commits for each product.

7.6. Correlated Metrics

I. Bad code

• Correlation: More degrading commits lead to an increase of bad code sections.

• Action: Implement rigorous testing, conduct code reviews, and ensure that the

development is not rushed.

II. Test percentage advised/Test scenarios absent

• Correlation: A low number of tests and low code coverage leads to bad code remaining

unidentified before committing.

• Action: Increase unit and integration tests to improve code coverage or improve tests.

7.7. Visualization

• Bar Charts

Use Case:

o Comparing the number of degrading commits across different products.

Advantages:

o Easy to compare values across products.

o Clearly shows trends and differences.

Example:

o X-Axis: Product.

o Y-Axis: Number of degrading code commits.

• Line Charts

Use Case:

o Tracking the trend and frequency of degrading code commits over time.

o Monitoring the progress of code quality improvement efforts.

Advantages:

o Shows trends and changes over time.

o Easy to identify peaks and troughs.

Example:

o X-Axis: Time periods (days, weeks, months).

o Y-Axis: Number of degrading code commits.

o Additional Elements: Separate lines for different products.

• Tables

Use Case:

o Detailed representation of commit data.

o Including multiple attributes such as commit ID, description and assigned

developer.

Advantages:

o Comprehensive and detailed.

o Allows for sorting and filtering.

Example:

o Columns for Commit ID, Description, Assigned Developer, Date.

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 14 of 33

• Scatter Plots

Use Case:

o Correlating the number of degrading code commits with other metrics such as bad

code or test scenarios absent.

Advantages:

o Shows relationships between two variables.

o Useful for identifying patterns and correlations.

Example:

o X-Axis: Bad code or another correlated metric.

o Y-Axis: Number of degrading code commits.

o Points: Individual data points, possibly color-coded or scaled by size.

8. Number of Issues Similar to Existing Code

8.1. Definition

The "number of issues similar to existing code" for a product refers to the total count of issues

(features or defects) that have not yet been implemented and were identified as being similar to

issues from other analysed products. The analysis shows unimplemented issues where the

description is similar to those of already implemented issues of other products.

8.2. Importance

Indicates the number of issues, for which existing code could be re-used.

8.3. Actions

Use issue similarity suggestions to identify similar issues across products to re-use code fixes.

8.4. Sources

• Issue tracking system

• IFAK’s Issue Analysis Tool

8.5. Grouping Variables

None.

8.6. Correlated Metrics

None.

8.7. Visualization

• Bar Charts

Use Case:

o Comparing the number of issues similar to existing code across different products.

Advantages:

o Easy to compare values across products.

o Clearly shows trends and differences.

Example:

o X-Axis: Product

o Y-Axis: Number of issues similar to existing code.

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 15 of 33

• Line Charts

Use Case:

o Tracking the trend of the number of issues similar to existing code over time.

Advantages:

o Shows trends and changes over time.

o Easy to identify peaks and troughs.

Example:

o X-Axis: Time periods (days, weeks, months).

o Y-Axis: Number of issues similar to existing code.

o Additional Elements: Separate lines for each product.

• Tables

Use Case:

o Detailed representation of issue data.

o Including multiple attributes such as issue ID, description, similarity score, product.

Advantages:

o Comprehensive and detailed.

o Allows for sorting and filtering.

Example:

o Columns for Issue ID, Description, Similarity Score, Product ID, Date Reported.

9. Number of Similar Issues with Different Code

9.1. Definition

The "number of similar issues with different code" for a product refers to the total count of issues

(features or defects) that are already implemented and have been identified as being similar to

issues from other analysed products but have been implemented in different ways. The analysis

shows issues where the description is similar, but the code is different.

9.2. Importance

Indicates the number of feature or fix implementations, that were done multiple times across

different products from scratch but could have been re-used.

9.3. Actions

Use issue similarity suggestions to identify similar issues across products to re-use code fixes.

9.4. Sources

• Code repository

• Issue tracking system

• IFAK’s Issue Analysis Tool

• TWT’s CSSA

9.5. Grouping Variables

None.

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 16 of 33

9.6. Correlated Metrics

I. Number of similar issues with similar code

• Correlation: New similar issues can only be categorized in one of both metrics, so both

will increase with the number of issues increasing.

• Action: Use issue similarity suggestions to identify similar issues across products to re-

use code fixes.

9.7. Visualization

• Bar Charts

Use Case:

o Comparing the number of similar issues with different code across different

products.

Advantages:

o Easy to compare values across products.

o Clearly shows trends and differences.

Example:

o X-Axis: Product

o Y-Axis: Number of similar issues with different code.

• Line Charts

Use Case:

o Tracking the trend of the number of similar issues with different code over time.

Advantages:

o Shows trends and changes over time.

o Easy to identify peaks and troughs.

Example:

o X-Axis: Time periods (days, weeks, months).

o Y-Axis: Number of similar issues with different code.

o Additional Elements: Separate lines for each product.

• Tables

Use Case:

o Detailed representation of issue data.

o Including multiple attributes such as issue ID, description, similarity score, product.

Advantages:

o Comprehensive and detailed.

o Allows for sorting and filtering.

Example:

o Columns for Issue ID, Description, Similarity Score, Product ID, Date Reported.

10. Number of Similar Issues with Similar Code

10.1. Definition

The "number of similar issues with similar code" for a product refers to the total count of issues

(features or defects) that have been identified as being similar to issues from other analysed

products and have been implemented in similar ways. The analysis shows issues where the

description and the code are similar.

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 17 of 33

10.2. Importance

Indicates the number of feature or fix implementations, that were done multiple times across

different products in similar ways and may have been re-used.

10.3. Actions

Use issue similarity suggestions to identify similar issues across products to re-use code fixes.

10.4. Sources

• Code repository

• Issue tracking system

• IFAK’s Issue Analysis Tool

• TWT’s CSSA

10.5. Grouping Variables

None.

10.6. Correlated Metrics

I. Number of similar issues with different code

• Correlation: New similar issues can only be categorized in one of both metrics, so both

will increase with the number of issues increasing.

• Action: Use issue similarity suggestions to identify similar issues across products to re-

use code fixes.

10.7. Visualization

• Bar Charts

Use Case:

o Comparing the number of similar issues with similar code across different

products.

Advantages:

o Easy to compare values across products.

o Clearly shows trends and differences.

Example:

o X-Axis: Product

o Y-Axis: Number of similar issues with similar code.

• Line Charts

Use Case:

o Tracking the trend of the number of similar issues with similar code over time.

Advantages:

o Shows trends and changes over time.

o Easy to identify peaks and troughs.

Example:

o X-Axis: Time periods (days, weeks, months).

o Y-Axis: Number of similar issues with similar code.

o Additional Elements: Separate lines for each product.

• Tables

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 18 of 33

Use Case:

o Detailed representation of issue data.

o Including multiple attributes such as issue ID, description, similarity score, product.

Advantages:

o Comprehensive and detailed.

o Allows for sorting and filtering.

Example:

o Columns for Issue ID, Description, Similarity Score, Product ID, Date Reported.

11. Observable Decision Coverage

11.1. Definition

Observable Decision Coverage measures how decisions in industrial control software (e.g., FBD

programs developed under IEC 61131-3 standards) are tested for all possible outcomes.

Specifically, this metric evaluates observable Boolean outcomes of each decision without going

into the internal logic. Observable Decision Coverage delta is an extension of this metric,

representing changes in coverage levels over time, capturing improvements or declines in

decision coverage. Monitoring the delta helps ensure that modifications, refinements, or additions

to software do not introduce untested decision points.

11.2. Importance

Test coverage is essential for quality assurance, particularly in safety-critical control software

applications. High observable decision coverage with positive delta trends contributes to overall

software quality and reduces risks associated with undetected faults in critical decision-making

logic.

11.3. Actions

To respond to observable decision coverage findings, particularly delta trends:

• Expand Combinatorial Techniques: For complex decisions, consider t-way combinatorial

testing (e.g., from pairwise to 3-way) to ensure higher coverage.

• Manual Augmentation: For cases where test generation tools fall short, create

11.4. Sources

Data for Observable Decision Coverage and its delta can be collected from:

• CODESYS IDE: For developing, running, and exporting PLC program test results.

• SEAFOX: Generates test cases and input data, for coverage analysis.

• CfUnit: Integrated testing tool in CODESYS for executing tests and logging.

11.5. Grouping Variables

Grouping for Observable decision coverage and its delta can provide insights:

I. Test Generation Method: Group by technique (e.g., Pairwise, Base Choice, Random) to

assess coverage levels and trends across combinatorial strategies.

II. Project Milestone or Release: Compare coverage at different development stages to

monitor delta trends and ensure ongoing quality.

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 19 of 33

11.6. Correlated Metrics

Observable decision coverage and delta correlate with other metrics:

• Defect density

• Test generation efficiency

11.7. Visualization

Visualizations for observable decision coverage and delta:

• Bar charts: show coverage levels highlighting areas with lower coverage and negative

deltas.

• Scatter plots: use scatter plots to show relationships between observable decision

coverage and correlated metrics like defect density.

12. Requirements Smell Score

12.1. Definition

The Requirements smell score is a composite metric that quantifies the presence of multiple

quality issues ("smells") in natural language requirements. These smells include vagueness,

optionality, subjectivity, complexity, readability, and referenceability, among others. The score is

calculated by aggregating individual metrics that detect these smells, resulting in a single score

that reflects the overall quality and clarity of the requirements document. The score can range

from low (indicating minimal issues) to high (indicating many issues), helping users identify

requirements that may require further refinement.

12.2. Importance

The Requirements smell score is a critical metric for ensuring the quality of requirements in

software projects. It helps teams identify areas where requirements may be unclear, ambiguous,

or overly complex, which can lead to misinterpretations and rework. By tracking this metric, project

teams gain insights into their requirements documentation, enabling them to address quality

issues early in the development process.

12.3. Actions

Based on the requirements smell score, teams can take the following actions:

• Refinement: requirements with high scores may benefit from clarification, simplification, or

rephrasing to reduce ambiguity.

• Training: reams may consider training stakeholders on writing high-quality, more

unambiguous requirements.

• Verification: requirements with high smell scores can undergo additional reviews or

stakeholder consultations to ensure they are well-understood.

• Documentation Standards: develop or refine standards for writing requirements and reduce

the occurrence of smells.

12.4. Sources

Requirements smell score can be gathered from:

• Requirements Documents: primary data sources such as software requirement

specifications, functional requirements documents, or user stories.

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 20 of 33

• Tools: Tools like NALABS or other Natural Language Processing (NLP) systems that

analyse text and detect defined smell metrics.

• Document Repositories: Requirements stored in repositories like GitHub can be processed

to extract relevant smell metrics.

12.5. Grouping Variables

The Requirements smell score can be grouped or analysed according to several variables for

insights:

I. By requirement type: group deltas by functional, non-functional, or security requirements

to see where issues may arise over time.

II. By component: track deltas across different system components to pinpoint areas where

requirements quality is improving or deteriorating.

III. By project milestone or phase: deltas can be monitored at each project milestone to

assess the impact of recent changes, adjustments, or corrective actions.

12.6. Correlated Metrics

Deltas in the requirements smell score can be further contextualized by correlating with other

metrics:

• Complexity: Rising complexity metrics may correlate with increases in smell scores,

suggesting areas where requirements could benefit from simplification.

• Defect density: tracking changes in defect density alongside smell score deltas may reveal

a direct link between requirements quality and defect occurrences.

• Readability: As readability improves or declines, corresponding shifts in the requirements

smell score may signal changes in complexity or structure.

12.7. Visualization

Visualization is essential for tracking and interpreting the requirements smell score and its deltas:

• Heatmaps: Score and delta variations across different sections or components.

• Time series line charts: Display smell score deltas over time, illustrating trends and

impacts of improvement efforts.

• Box plots with deltas: Highlight score distributions and changes over specified time

periods.

13. Size of Bad Code

13.1. Definition

The "size of bad code" in a project refers to the total size of bad code segments (e.g. in code

lines) identified in the overall source code base as affecting the product quality detrimentally.

13.2. Importance

Indicates the health of the software project. A large amount of bad code may lead to bugs, poor

performance or the non-fulfilment of requirements.

13.3. Actions

Implement rigorous testing, conduct code reviews, and reduce technical debt to reduce the size of

bad code.

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 21 of 33

13.4. Sources

• Code repository

• UIBK’s SoHist

13.5. Grouping Variables

I. Product

• Definition: The product that multiple code repositories contribute to.

• Importance: Presents the ability to get an overview of size of bad code for the whole

product.

• Examples: Aggregated size of bad code for each product

13.6. Correlated Metrics

I. Test percentage advised/Test scenarios absent

• Correlation: A low number of test scenarios may lead to more bad code remaining

unidentified.

• Action: Increase test coverage to identify bad code segments.

II. Number of degrading code commits

• Correlation: A high number of degrading code commits often leads to the increase of bad

code sections.

• Action: Increase testing

13.7. Visualization

• Bar Charts

Use Case:

o Comparing the size of bad code across different products.

Advantages:

o Easy to compare values across categories.

o Clearly shows trends and differences.

Example:

o X-Axis: Product.

o Y-Axis: Size of bad code.

o Additional Elements: Different colours or stacked bars to represent types of bad

code.

• Line Charts

Use Case:

o Tracking the trend of the size of bad code over time.

o Monitoring the progress of code quality improvement efforts.

Advantages:

o Shows trends and changes over time.

o Easy to identify peaks and troughs.

Example:

o X-Axis: Time periods (days, weeks, months).

o Y-Axis: Size of bad code.

o Additional Elements: Separate lines for different products.

• Pie Charts

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 22 of 33

Use Case:

o Showing the proportion of bad code relative to total code size.

o Visualising the distribution of bad code across different products.

Advantages:

o Provides a clear visual representation of proportions.

o Easy to understand at a glance.

Example:

o One pie chart per product with one slice for bad code and one for the remaining

code.

• Scatter Plots

Use Case:

o Correlating the size of bad code with other metrics such as test scenarios absent

or number of degrading code commits.

Advantages:

o Shows relationships between two variables.

o Useful for identifying patterns and correlations.

Example:

o X-Axis: Test scenarios absent or another correlated metric.

o Y-Axis: Size of bad code.

o Points: Individual data points, possibly color-coded or scaled by size.

14. Test Effort

14.1. Definition

Testing effort can be measured at different levels of software development granularity, namely

commits, pull requests, and releases. Considering software development as a continuous

process, one can provide a prediction of test effort for subsequent commits, pull requests, or

releases based on all the previous changes at any of these levels. This could enable a project

manager to predict test effort for any of the three granularity levels. By analysing different types of

granularities, we can get a more accurate picture of the amount of testing effort required. This is

because different types of changes (e.g., commits, pull requests) can have different degrees of

impact on the software and therefore require different levels of testing effort.

14.2. Importance

Test effort estimation is a crucial phase when estimating the time and cost of a software

development project. Accurate test effort estimation is crucial for project success and minimizing

costs in posterior fixes in the code’s maintenance phase of SDLC. In recent years, software effort

estimation has become a challenging problem for the software industry, attracting research

interest from academia and industry professionals. Part of the interest comes from the fact that

lack of software testing impacts the quality of the

software overall.

14.3. Actions

Test effort can be estimated by analysing metrics from the development code at various code

change granularities. The highest accuracy in classifying test effort was achieved for releases

among the three used granularities (i.e., commits, pull requests, and releases). By using test effort

in terms of CLOC, managers can be assisted in resource planning, budget management, and

quality assurance. This information can help them make informed decisions related to testing.

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 23 of 33

Assuming that the estimation is valid, managers can allocate the right resources at the right time,

avoiding delays and unnecessary costs. Also, inadequate testing could impact the general quality

of the product. This can lead to quality issues that could be expensive to fix later. Accurate

estimation ensures that sufficient time is dedicated to thorough testing early on, potentially leading

to better quality.

14.4. Sources

We use three sources of data, namely:

Designite Java: This tool is used to analyse the quality of Java-based repositories to identify

architecture, design, and implementation issues that could influence maintainability. Moreover, it

computes various object-oriented metrics. Designite generates an analysis summary specific to

the current version of the project. To evaluate each commit merged into the main repository

branch, we extract feature values from this analysis summary.

JavaNCSS: This is an open-source command line tool that analyses Java-based repositories. It

calculates noncommenting source statements, the number of packages, classes, functions,

cyclomatic complexity, and many other Metrics.

GitHub API: This API is used to interact with GitHub repositories and get information about the

commits, pull requests, and tags. This tool helps to detect the change of lines of code in each

granularity.

14.5. Grouping Variables

We extract variables about all the commits, irrespective of whether they were merged in the main

branch or not. We also extract variables for the commits that have been merged into the main

branch. To get a unified dataset for each granularity, we include only the commits intersecting with

all three data sources in the final dataset.

Variable set 1 contains the following information: Changes lines of code in each file, pull request

number corresponding to each commit, and release tags and the associated commit. It also

contains the names of the files changed in each commit, which we use to segregate the feature

values of the test and development code based on the search string “test”. Only the feature values

of the development code were used for training. The feature values of the test code are our target

labels.

Variable set 2 contains non-commenting source statements, Cyclomatic Complexity, Javadoc

comments etc., while variable set 3 contains architectural smells, design smells, and compute

metrics. Feature sets 2 and 3 are exclusively used for training.

We return three datasets, one for each granularity, commits, pull requests and releases. Since the

data from each of the three sources is extracted based on commits, we combined data from the

commits corresponding to each pull request and release to prepare the final merged datasets for

these specific granularities.

14.6. Correlated Metrics

Test effort seems to be correlated with change of lines of code metrics from the development code

at various code change granularities. The highest accuracy in classifying test effort was achieved

for releases among the three used granularities (i.e., commits, pull requests, and releases).

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 24 of 33

On an implementation level, test effort of a function is tied to the types of the inputs and outputs,

as different types have a different impact on the number of equivalence classes or abstract

domains.

14.7. Visualization

Example of visualizations for test effort estimation is shown below:

When visualizing metric data related to test effort estimation, tables and pie charts provide two

distinct but complementary ways to present this information.

 The tabular format allows a clear comparison of metrics (additions, deletions, changes) across

different classification tasks and machine learning models:

- Group by Platform/Method: Organize the table so that each row corresponds to a platform and

the method used (Random Forests, MLP).

- Metric Columns: Keep separate columns for each metric (Additions, Deletions, Changes) across

different categories (Commits, Pull Requests, Releases).

- Highlight Key Values: Use bold or shading to highlight key values, such as the highest accuracy

in each row, to make it easier for readers to identify top-performing methods.

Example Structure:

Platform Method Commits

Additions

Commits

Deletions

Commits

Changes

Pull Req.

Additions

Pull Req.

Deletions

Pull Req.

Changes

Releases

Additions

Releases

Deletions

Releases

Changes

Platform

1

Random

Forests

0.6481 0.4630 0.7222 1.0000 1.0000 0.5000 0.2500 0.7500 0.8750

Platform

2

Random

Forests

0.7260 0.7473 0.8541 0.6171 0.5547 0.6484 0.8065 0.8387 0.7419

Platform

3

Random

Forests

0.9656 0.9312 0.9743 0.7353 0.4632 0.7206 0.9574 0.9574 1.0000

Pie charts are particularly useful for visualizing the distribution of feature importances or

classifications across different categories, as shown in the feature importance diagrams.

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 25 of 33

15. Test Percentage Advised/Test Scenarios Absent

15.1. Definition

The "test percentage advised" in a project refers to the ratio of test cases implemented in

comparison to the number of test cases that are suggested to be implemented. Expressed as a

formular: (n° of implemented test cases / n° of suggested test cases) * 100. “Test scenarios

absent” refers to the total difference between implemented and suggested test cases, resulting in

the number of test cases not yet implemented.

15.2. Importance

Indicates the test coverage of a software project. A low-test percentage and high number of test

scenarios absent indicate a low test coverage that may lead to unidentified bugs, missing edge

cases or unused code.

15.3. Actions

Refer to the test case suggestions to add missing test cases where they are useful. Add test

cases for new features while developing the feature.

15.4. Sources

• Code repository

• UIBK’s SoHist

15.5. Grouping Variables

None.

15.6. Correlated Metrics

I. Bad Code

• Correlation: More test cases might lead to the identification of bad code sections.

• Action: Add missing test cases for uncovered code sections and use static analysis tools

to identify bad code blocks.

15.7. Visualization

• Bar Charts

Use Case:

o Comparing the number/percentage of test cases between products.

Advantages:

o Easy to compare values across products.

o Clearly shows trends and differences.

Example:

o X-Axis: Product.

o Y-Axis: Test percentage advised/Test cases absent.

• Line Charts

Use Case:

o Tracking the trend of tests over time.

o Monitoring the progress of test coverage improvement efforts.

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 26 of 33

Advantages:

o Shows trends and changes over time.

o Easy to identify peaks and troughs.

Example:

o X-Axis: Time periods (days, weeks, months).

o Y-Axis: Test percentage advised/Test cases absent.

o Additional Elements: Separate lines for different products.

• Pie Charts

Use Case:

o Showing the proportion of implemented and suggested (not implemented) tests.

o Visualising the distribution of test across different products.

Advantages:

o Provides a clear visual representation of proportions.

o Easy to understand at a glance.

Example:

o One pie chart per product with one slice for the number of implemented test cases

and one for the number of test cases absent.

• Scatter Plots

Use Case:

o Correlating the number of test cases absent with other metrics such as size of bad

code.

Advantages:

o Shows relationships between two variables.

o Useful for identifying patterns and correlations.

Example:

o X-Axis: Bad Code (possibly correlated metric).

o Y-Axis: Test cases absent.

o Points: Individual data points per product, possibly color-coded or scaled by size.

16. Defect Effort

16.1. Definition

"Defect Effort" refers to the software development effort spent on fixing bugs. This effort is

measured based on the total number of changed lines of code (added, modified, and deleted

lines) associated with defect resolution. It does not include Feature Effort (new feature

development) or Enhancement Effort (refactoring and optimizations).

16.2. Importance

Tracking Defect Effort helps teams understand how much of their development capacity is

dedicated to resolving software defects. A high Defect Effort percentage may indicate underlying

issues with software quality, requiring improved testing and development practices.

A balanced Defect Effort ensures that defects are addressed without overwhelming feature

development and enhancement efforts.

16.3. Actions

Identify trends in defect resolution effort to assess software quality over time.

Improve test coverage and quality assurance to minimize future defect resolution work.

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 27 of 33

Allocate sufficient resources to defect resolution without negatively impacting new feature

development.

16.4. Sources

• Code Repository

• Issue Tracking System

16.5. Grouping Variables

I. Product

• Definition: The product or system that multiple repositories contribute to.

• Importance: Allows for a holistic view of Feature Effort across an entire product.

• Examples: Aggregated Defect Effort for a software suite with multiple services.

II. Development Team

• Definition: The team responsible for resolving defects.

• Importance: Helps analyze team efficiency and identify workload distribution.

• Examples: Comparison of Defect Effort across backend and frontend teams.

16.6. Correlated Metrics

I. Feature Effort

• Correlation: A high Feature Effort with increasing Defect Effort may indicate poor initial

implementation quality.

• Action: Improve design and code reviews before new feature implementations.

II. Enhancement Effort

• Correlation: A low Enhancement Effort may indicate that code quality is not being actively

improved, leading to technical debt.

• Action: Allocate time for codebase improvements to prevent recurring defects.

III. Code Churn Rate

• Correlation: A high churn rate may indicate unstable development practices leading to

defects.

• Action: Implement stricter validation processes and improve developer collaboration.

16.7. Visualization

• Bar Charts

Use Case:

o Comparing Defect Effort across different teams or products.

Advantages:

o Easily compares values across categories.

o Highlights discrepancies in Defect Effort allocation.

Example:

o X-Axis: Teams or products.

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 28 of 33

o Y-Axis: Defect Effort (in total changed lines of code).

o Additional Elements: Different colours to distinguish types of defects (e.g.,

critical vs. minor bugs).

• Line Charts

Use Case:

o Tracking Defect Effort trends over time.

Advantages:

o Shows fluctuations in Defect Effort across different time periods.

o Helps detect patterns related to software stability.

Example:

o X-Axis: Time periods (weeks, sprints, months).

o Y-Axis: Defect Effort

o Additional Elements: Separate lines for different teams or projects.

• Pie Charts

Use Case:

o Showing Defect Effort as a proportion of total development effort.

Advantages:

o Provides a clear view of effort distribution.

o Helps assess the balance between defect resolution, feature development, and

enhancements.

Example:

o One pie chart per product, with slices for Feature Effort, Defect Effort, and

Enhancement Effort.

• Scatter Plots

Use Case:

o Correlating Defect Effort with other metrics, such as feature effort or code churn

rate.

Advantages:

o Helps identify trade-offs between feature development and software quality.

o Useful for detecting inefficiencies in the development process.

Example:

o X-Axis: Code churn rate or another correlated metric.

o Y-Axis: Defect Effort

o Additional Elements: Individual data points representing different teams or sprints,

color-coded by project phase.

17. Feature Effort

17.1. Definition

"Feature Effort" refers to the software development effort spent on developing new features or

making improvements to a project. This effort does not include effort spent on fixing defects

(Defect Effort) or improving code quality through refactoring and optimizations (Enhancement

Effort). Feature Effort is measured based on the total number of changed lines of code (added,

modified, and deleted lines) rather than time spent.

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 29 of 33

17.2. Importance

Tracking Feature Effort helps teams understand how much of their development capacity is

dedicated to delivering new functionality. A well-balanced allocation ensures continuous

innovation while maintaining code quality and stability.

A high Feature Effort percentage indicates a strong focus on expanding functionality, while a

lower percentage may indicate that teams are overwhelmed with bug fixes or technical debt

reduction.

17.3. Actions

• Ensure a balanced distribution between Feature Effort, Defect Effort, and Enhancement Effort

to maintain software quality.

• Monitor trends over time to identify whether teams are spending excessive effort on non-

feature work.

• Use Feature Effort data to align development priorities with business goals and ensure that

engineering resources are effectively utilized.

17.4. Sources

• A. Code Repository

• B. Issue Tracking System

17.5. Grouping Variables

I. Product

• Definition: The product or system that multiple repositories contribute to.

• Importance: Allows for a holistic view of Feature Effort across an entire product.

• Examples: Aggregated Feature Effort for a software suite with multiple services.

II. Development Team

• Definition: The team responsible for implementing features.

• Importance: Helps analyze team efficiency and identify workload distribution.

• Examples: Comparison of Feature Effort across backend and frontend teams.

17.6. Correlated Metrics

I. Defect Effort

• Correlation: A high Defect Effort may indicate that new features introduce significant

bugs, leading to rework.

• Action: Improve testing and quality assurance to reduce post-release bug fixes.

II. Enhancement Effort

• Correlation: A low Enhancement Effort may indicate that code quality is not being actively

improved, leading to technical debt.

• Action: Allocate dedicated time for refactoring and performance optimizations.

III. Code Churn Rate

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 30 of 33

• Correlation: A high code churn rate (frequent rewrites of recent code) may indicate

inefficiencies or unstable development.

• Action: Improve planning and design before implementing new features.

17.7. Visualization

• Bar Charts

Use Case:

o Comparing Feature Effort across different teams or products.

Advantages:

o Easily compares values across categories.

o Highlights discrepancies in Feature Effort allocation.

Example:

o X-Axis: Teams or products.

o Y-Axis: Feature Effort (in total changed lines of code).

o Additional Elements: Different colours to distinguish feature types (e.g., UI

improvements vs. backend features).

• Line Charts

Use Case:

o Tracking Feature Effort trends over time.

Advantages:

o Shows fluctuations in Feature Effort across different time periods.

o Helps detect shifts in development focus.

Example:

o X-Axis: Time periods (weeks, sprints, months).

o Y-Axis: Feature Effort

o Additional Elements: Separate lines for different teams or projects.

• Pie Charts

Use Case:

o Showing Feature Effort as a proportion of total development effort.

Advantages:

o Provides a clear view of effort distribution.

o Helps assess the balance between feature development, bug fixing, and

enhancements.

Example:

o One pie chart per product, with slices for Feature Effort, Defect Effort, and

Enhancement Effort.

• Scatter Plots

Use Case:

o Correlating Feature Effort with other metrics, such as defect effort or code churn

rate.

Advantages:

o Helps identify trade-offs between feature development and software quality.

o Useful for detecting inefficiencies in the development process.

Example:

o X-Axis: Code churn rate or another correlated metric.

o Y-Axis: Feature Effort

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 31 of 33

o Additional Elements: Individual data points representing different teams or

sprints, color-coded by project phase.

18. Review Percentage

18.1. Definition

"Review Percentage" refers to the proportion of code changes that go through a review process

before being merged into the main codebase. It is derived from the pull request (PR) review

system and indicates how rigorously code is reviewed before integration. This metric can be

measured at both the project and module levels.

18.2. Importance

Review Percentage is a key indicator of code quality control and development discipline. A higher

review percentage typically correlates with fewer defects and better code maintainability.

Conversely, a low review percentage may indicate rushed development, leading to increased

defect rates and technical debt.

18.3. Actions

• Encourage peer code reviews to improve code quality and knowledge sharing.

• Establish review policies ensuring all code undergoes review before merging.

• Monitor review trends to detect gaps in code quality control and developer engagement.

18.4. Sources

• Code Repository

• Issue Tracking System

18.5. Grouping Variables

I. Project

• Definition: The software project being measured.

• Importance: Allows assessment of review processes across an entire project.

• Examples: Review Percentage for a microservices-based application.

II. Module

• Definition: A specific component or module of a project.

• Importance: Helps identify areas where review practices may need improvement.

• Examples: Review Percentage for frontend vs. backend modules.

18.6. Correlated Metrics

I. Defect Rate

• Correlation: A low Review Percentage may correlate with a higher defect rate.

• Action: Increase review requirements to improve defect detection before deployment.

II. Bug Count

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 32 of 33

• Correlation: Projects or modules with lower review percentages may have a higher

number of reported bugs.

• Action: Implement stricter review policies and quality control processes.

18.7. Visualization

• Bar Charts

Use Case:

o Comparing Review Percentage across different teams, projects, or modules.

Advantages:

o Clearly highlights differences in code review adoption.

o Helps identify teams or projects that need stricter review processes.

Example:

o X-Axis: Teams, projects, or modules.

o Y-Axis: Review Percentage.

o Additional Elements: Different colors to indicate levels of review percentage.

• Line Charts

Use Case:

o Tracking Review Percentage trends over time.

Advantages:

o Shows the evolution of code review practices.

o Helps detect patterns in review adherence.

Example:

o X-Axis: Time periods (weeks, sprints, months).

o Y-Axis: Review Percentage.

o Additional Elements: Separate lines for different teams, modules or projects.

• Scatter Plots

Use Case:

o Correlating Review Percentage with defect rate or bug count.

Advantages:

o Helps identify relationships between code review rigor and software quality.

o Useful for evaluating the impact of review policies.

Example:

o X-Axis: Defect rate or bug count.

o Y-Axis: Review Percentage.

o Additional Elements: Individual data points representing different teams,

projects, or modules.

19. Summary

The "D5.6 SmartDelta Metrics Guideline" document details the approach to defining, measuring,

and visualizing key performance indicators within the SmartDelta project. It begins by outlining the

purpose and importance of metrics, emphasizing their role in monitoring project progress and

outcomes.

The document categorizes metrics into various types, distinguishing between quantitative and

qualitative measures. It provides detailed methodologies for metric collection, analysis, and

interpretation, ensuring uniformity across project contributors. Additionally, it highlights best

practices for visualization, specifically through the use of Vaadin charts, to enhance the clarity and

accessibility of complex data.

Deliverable 5.6

 © 2025 SmartDelta Consortium Page 33 of 33

Further sections delve into case studies and practical applications of the proposed metrics

framework, showcasing real-world examples from project partners. Recommendations for

continuous improvement and adaptability of the metrics system are also included, ensuring long-

term applicability and relevance.

By following this guideline, SmartDelta stakeholders can leverage a standardized approach to

metric evaluation, fostering improved decision-making and operational efficiency across the

project lifecycle.

	Executive Summary
	1. Introduction
	2. Cybersecurity Response Efficiency – Mean Time to Detect (MTTD) and Mean Time to Respond (MTTR)
	2.1. Definition
	2.2. Importance
	2.3. Actions
	2.4. Sources
	2.5. Grouping Variables
	2.6. Correlated Metrics
	2.7. Visualization

	3. Automated Test Generation Efficiency
	3.1. Definition
	3.2. Importance
	3.3. Actions
	3.4. Sources
	3.5. Grouping Variables
	3.6. Correlated Metrics
	3.7. Visualization

	4. Code Quality Score
	4.1. Definition
	4.2. Importance
	4.3. Actions
	4.4. Sources
	4.5. Grouping Variables
	4.6. Correlated Metrics
	4.7. Visualization

	5. Number of Artefacts Analysed per Product
	5.1. Definition
	5.2. Importance
	5.3. Actions
	5.4. Sources
	5.5. Grouping Variables
	5.6. Correlated Metrics
	5.7. Visualization

	6. Number of Bugs
	6.1. Definition
	6.2. Importance
	6.3. Actions
	6.4. Sources
	6.5. Grouping Variables
	6.6. Correlated Metrics
	6.7. Visualization

	7. Number of Frequency of Degrading Code Commits
	7.1. Definition
	7.2. Importance
	7.3. Actions
	7.4. Sources
	7.5. Grouping Variables
	7.6. Correlated Metrics
	7.7. Visualization

	8. Number of Issues Similar to Existing Code
	8.1. Definition
	8.2. Importance
	8.3. Actions
	8.4. Sources
	8.5. Grouping Variables
	8.6. Correlated Metrics
	8.7. Visualization

	9. Number of Similar Issues with Different Code
	9.1. Definition
	9.2. Importance
	9.3. Actions
	9.4. Sources
	9.5. Grouping Variables
	9.6. Correlated Metrics
	9.7. Visualization

	10. Number of Similar Issues with Similar Code
	10.1. Definition
	10.2. Importance
	10.3. Actions
	10.4. Sources
	10.5. Grouping Variables
	10.6. Correlated Metrics
	10.7. Visualization

	11. Observable Decision Coverage
	11.1. Definition
	11.2. Importance
	11.3. Actions
	11.4. Sources
	11.5. Grouping Variables
	11.6. Correlated Metrics
	11.7. Visualization

	12. Requirements Smell Score
	12.1. Definition
	12.2. Importance
	12.3. Actions
	12.4. Sources
	12.5. Grouping Variables
	12.6. Correlated Metrics
	12.7. Visualization

	13. Size of Bad Code
	13.1. Definition
	13.2. Importance
	13.3. Actions
	13.4. Sources
	13.5. Grouping Variables
	13.6. Correlated Metrics
	13.7. Visualization

	14. Test Effort
	14.1. Definition
	14.2. Importance
	14.3. Actions
	14.4. Sources
	14.5. Grouping Variables
	14.6. Correlated Metrics
	14.7. Visualization

	15. Test Percentage Advised/Test Scenarios Absent
	15.1. Definition
	15.2. Importance
	15.3. Actions
	15.4. Sources
	15.5. Grouping Variables
	15.6. Correlated Metrics
	15.7. Visualization

	16. Defect Effort
	16.1. Definition
	16.2. Importance
	16.3. Actions
	16.4. Sources
	16.5. Grouping Variables
	16.6. Correlated Metrics
	16.7. Visualization

	17. Feature Effort
	17.1. Definition
	17.2. Importance
	17.3. Actions
	17.4. Sources
	17.5. Grouping Variables
	17.6. Correlated Metrics
	17.7. Visualization

	18. Review Percentage
	18.1. Definition
	18.2. Importance
	18.3. Actions
	18.4. Sources
	18.5. Grouping Variables
	18.6. Correlated Metrics
	18.7. Visualization

	19. Summary

